Archives for posts with tag: Galapagos for grasshopper

It’s been several years now since the Galapagos component was included in Grasshopper for Rhino. Back in 2011 Charles Aweida wrote a blog post that included a proof of concept in which he used this tool to optimize a simple multi-sided form to receive the lowest amount of heat energy from the sun. Since then, we’ve been trying to create optimization tools at the building scale that can inform our decision making process during design. The videos below are optimizations for heat gain and views on a site in Boston, MA. We are actively looking for ways to expand this list to include a wider range of project / site specific design drivers such as daylighting, structure, and wind.

………………………………………………………………………………………

Read the rest of this entry »

Advertisements

Evolutionary problem solving mimics the theory of evolution employing the same trial-and-error methods that nature uses in order to arrive at an optimized result.  When automated for specific parameters and results, this technique becomes an effective way to computationally drive controlled results within the iterative design process – allowing designers to produce optimized parameters resulting in a form, graphic or piece of data that best meets design criteria. In this post we walk you through the process of using Galapagos, an evolutionary solver for Rhino/ Grasshopper, and show an example of how this method can be tied in with analysis tools to optimize form based on energy data.

Read the rest of this entry »